资讯中心 > 产品文献集 > Cancer Research (96)

  ✔本篇论文使用华联产品:Human miRNA OneArray  
 Prostate. doi: 10.1002/pros.23068. Epub 2015 Aug 26..
 Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1 
 
  Abstract
Background MicroRNAs (miRNAs) have been demonstrated playing important roles in the procession of prostate cancer cells transformation from androgen-dependence to androgen-independence. Methods We conducted the miRNA microarray and realtime PCR analyses in both androgen-dependent (ADPC) and androgen-independent prostate cancer (AIPC) tissues. We also explored the role of hsa-miR-146a-5p (miR-146a) in MSKCC prostate cancer clinical database. Moreover, the impact of miR-146a on prostate cancer cells apoptosis were detected by Hoechst staining and fluorescence-activated cell sorter (FACS). Its target is predicted by DIANA LAB online database and the result was assumed by western blotting and luciferase assay. Results We demonstrated that miR-146a was down-regulated in AIPC tissues and cell lines compared to that in the ADPC tissues. In MSKCC data re-analyses, we found that miR-146a was underexpressed in metastatic prostate cancer tissues and those with Gleason score >8, moreover, low level of miR-146a represented a high biochemical relapse rate after radical prostatectomy. In the functional analyses, we transfected miR-146a mimics into CPRC cell lines and found miR-146a induced cells apoptosis. In mechanic analyses, we found that miR-146a inhibited the basal level of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) expression by targeting its 3'UTR and an inverse correlation of expression between miR-146a and ROCK1 was observed. Moreover, caspase 3 activity was stimulated by miR-146a overexpression. Conclusion miR-146a has a critical role in the process of AIPC prostate cancer cells apoptosis through regulation of ROCK/Caspase 3 pathway. Targeting this pathway may be a promising therapeutic strategy for future personalized anti-cancer treatment.
   

Topic Related Articles

  ✔本篇论文使用华联产品:Human OneArray  
 Oncoscience. doi:10.18632/oncoscience.285.
 In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes
 
 
 
  Abstract
There are currently no effective molecular targeted therapies for hepatocellular carcinoma (HCC), the third leading cause of cancer-related death worldwide. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27)-specific methyltransferase, has been emerged as novel anticancer target. Our previous study has demonstrated that GSK343, an S-adenosyl-L-methionine (SAM)-competitive inhibitor of EZH2, induces autophagy and enhances drug sensitivity in cancer cells including HCC. In this study, an in silico study was performed and found that EZH2 was overexpressed in cancerous tissues of HCC patients at both gene and protein levels. Microarray analysis and in vitro experiments indicated that the anti-HCC activity of GSK343 was associated with the induction of metallothionein (MT) genes. In addition, the negative association of EZH2 and MT1/MT2A genes in cancer cell lines and tissues was found in public gene expression database. Taken together, our findings suggest that EZH2 inhibitors could be a good therapeutic option for HCC, and induction of MT genes was associated with the anti-HCC activity of EZH2 inhibitors.
   

  ✔本篇论文使用华联产品:Human OneArray  
 Scientific Reports . doi: 10.1038/srep19156.
 A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting β-catenin/LEF-1 signaling
 
 
 
  Abstract
The inhibition of β-catenin/LEF-1 signaling is an emerging strategy in cancer therapy. However, clinical targeted treatment of the β-catenin/LEF-1 complex remains relatively ineffective. Therefore, development of specific molecular targets is a key approach for identifying new cancer therapeutics. Thus, we attempted to synthesize a peptide (TAT-NLS-BLBD-6) that could interfere with the interaction of β-catenin and LEF-1 at nuclei in human breast cancer cells. TAT-NLS-BLBD-6 directly interacted with β-catenin and inhibited breast cancer cell growth, invasion, migration, and colony formation as well as increased arrest of sub-G1 phase and apoptosis; it also suppressed breast tumor growth in nude mouse and zebrafish xenotransplantation models, showed no signs of toxicity, and did not affect body weight. Furthermore, the human global gene expression profiles and Ingenuity Pathway Analysis software showed that the TAT-NLS-BLBD-6 downstream target genes were associated with the HER-2 and IL-9 signaling pathways. TAT-NLS-BLBD-6 commonly down-regulated 27 candidate genes in MCF-7 and MDA-MB-231 cells, which are concurrent with Wnt downstream target genes in human breast cancer. Our study suggests that TAT-NLS-BLBD-6 is a promising drug candidate for the development of effective therapeutics specific for Wnt/β-catenin signaling inhibition.
   

Product Related Articles

  ✔本篇论文使用华联产品:Human miRNA OneArray  
 Plos Genetics. PLOS Genetics doi:10.1371/journal.pgen.1005726.
 fMiRNA-192 and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma
 
 
 
  Abstract
Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. However, it is still largely unknown how these lncRNAs were regulated by small ncRNAs, such as microRNAs (miRNAs), at the post-transcriptional level. We here use lncRNA HOTTIP as an example to study how miRNAs impact lncRNAs expression and its biological significance in hepatocellular carcinoma (HCC). LncRNA HOTTIP is a vital oncogene in HCC, one of the deadliest cancers worldwide. In the current study, we identified miR-192 and miR-204 as two microRNAs (miRNAs) suppressing HOTTIP expression via the Argonaute 2 (AGO2)-mediated RNA interference (RNAi) pathway in HCC. Interaction between miR-192 or miR-204 and HOTTIP were further confirmed using dual luciferase reporter gene assays. Consistent with this notion, a significant negative correlation between these miRNAs and HOTTIP exists in HCC tissue specimens. Interestingly, the dysregulation of the three ncRNAs was associated with overall survival of HCC patients. In addition, the posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells. On the contrary, antagonizing endogenous miR-192 or miR-204 led to increased HOTTIP expression and stimulated cell proliferation. In vivo mouse xenograft model also support the tumor suppressor role of both miRNAs. Besides the known targets (multiple 5’ end HOX A genes, i.e. HOXA13), glutaminase (GLS1) was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Considering glutaminolysis as a crucial hallmark of cancer cells and significantly inhibited cell viability after silencingGLS1, we speculate that the miR-192/-204-HOTTIP axis may interrupt HCC glutaminolysis through GLS1 inhibition. These results elucidate that the miR-192/-204-HOTTIP axis might be an important molecular pathway during hepatic cell tumorigenesis. Our data in clinical HCC samples highlight miR-192, miR-204 and HOTTIP with prognostic and potentially therapeutic
   

  ✔本篇论文使用华联产品:Human miRNA OneArray  
 Nature Cell Biology. 2015, 17(3):311-21. doi: 10.1038/ncb3110.
 Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis
 
 
 Einav Shoshan, Aaron K. Mobley, Russell R. Braeuer, Takafumi Kamiya, Li Huang, Mayra E. Vasquez, Ahmad Salameh, Ho Jeong Lee, Sun Jin Kim, Cristina Ivan, Guermarie Velazquez-torres, Ka Ming Nip, Kelsey Zhu, Denise Brooks, Steven J. M. Jones, Inanc Birol,maribel Mosqueda, Yu-ye Wen, Agda Karina Eterovic, Anil K. Sood, Patrick Hwu, Je Rey E. Gershenwald, A. Gordon Robertson, George A. Calin, Galmarkel, Isaiah J. Fidler, Menashe Bar-eli
  Abstract
Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs (miRNAs), its effects on tumour growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumour specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified three miRNAs undergoing A-to-I editing in the weakly metastatic melanoma but not in strongly metastatic cell lines. One of these miRNAs, miR-455-5p, has two A-to-I RNA-editing sites. The biological function of edited miR-455-5p is different from that of the unedited form, as it recognizes a different set of genes. Indeed, wild-type miR-455-5p promotes melanoma metastasis through inhibition of the tumour suppressor gene CPEB1. Moreover, wild-type miR-455 enhances melanoma growth and metastasis in vivo, whereas the edited form inhibits these features. These results demonstrate a previously unrecognized role for RNA editing in melanoma progression.