资讯中心 > 产品文献集 > Molecular Cell Biology (167)

  ✔本篇论文使用华联产品:Human OneArray  
 Genes & Development. 2012, 26(12):1364-75. doi: 10.1101/gad.186056.111.
 The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation 
 Shuzhen Chen, Jian Ma, Feizhen Wu, Li-jun Xiong, Honghui Ma, Wenqi Xu, Ruitu Lv, Xiaodong Li, Judit Villen, Steven P. Gygi, Xiaole Shirley Liu, Yang Shi
  Abstract
The histone H3 Lys 27 (H3K27) demethylase JMJD3 has been shown to play important roles in transcriptional regulation and cell differentiation. However, the mechanism underlying JMJD3-mediated transcriptional regulation remains incompletely understood. Here we show that JMJD3 is associated with KIAA1718, whose substrates include dimethylated H3K27 (H3K27me2), and proteins involved in transcriptional elongation. JMJD3 and KIAA1718 directly bind to and regulate the expression of a plethora of common target genes in both a demethylase activity-dependent and -independent manner in the human promyelocytic leukemia cell line HL-60. We found that JMJD3 and KIAA1718 collaborate to demethylate trimethylated H3K27 (H3K27me3) on a subset of their target genes, some of which are bivalently marked by H3K4me3 and H3K27me3 and associated with promoter-proximal, paused RNA polymerase II (Pol II) before activation. Reduction of either JMJD3 or KIAA1718 diminishes Pol II traveling along the gene bodies of the affected genes while having no effect on the promoter-proximal Pol II. Furthermore, JMJD3 and KIAA1718 also play a role in localizing elongation factors SPT6 and SPT16 to the target genes. Our results support the model whereby JMJD3 activates bivalent gene transcription by demethylating H3K27me3 and promoting transcriptional elongation. Taken together, these findings provide new insight into the mechanisms by which JMJD3 regulates gene expression.
   

Topic Related Articles

  ✔本篇论文使用华联产品:Human OneArray  
 Oncoscience. doi:10.18632/oncoscience.285.
 In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes
 
 
 
  Abstract
There are currently no effective molecular targeted therapies for hepatocellular carcinoma (HCC), the third leading cause of cancer-related death worldwide. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27)-specific methyltransferase, has been emerged as novel anticancer target. Our previous study has demonstrated that GSK343, an S-adenosyl-L-methionine (SAM)-competitive inhibitor of EZH2, induces autophagy and enhances drug sensitivity in cancer cells including HCC. In this study, an in silico study was performed and found that EZH2 was overexpressed in cancerous tissues of HCC patients at both gene and protein levels. Microarray analysis and in vitro experiments indicated that the anti-HCC activity of GSK343 was associated with the induction of metallothionein (MT) genes. In addition, the negative association of EZH2 and MT1/MT2A genes in cancer cell lines and tissues was found in public gene expression database. Taken together, our findings suggest that EZH2 inhibitors could be a good therapeutic option for HCC, and induction of MT genes was associated with the anti-HCC activity of EZH2 inhibitors.
   

  ✔本篇论文使用华联产品:Human OneArray  
 Bmc Bioinformatics. doi: 10.1186/s12859-015-0848-x.
 Gene expression profiling identifies candidate biomarkers for active and latent tuberculosis
 
 
 
  Abstract
Background Tuberculosis (TB) is a serious infectious disease in that 90 % of those latently infected with Mycobacterium tuberculosis present no symptoms, but possess a 10 % lifetime chance of developing active TB. To prevent the spread of the disease, early diagnosis is crucial. However, current methods of detection require improvement in sensitivity, efficiency or specificity. In the present study, we conducted a microarray experiment, comparing the gene expression profiles in the peripheral blood mononuclear cells among individuals with active TB, latent infection, and healthy conditions in a Taiwanese population. Results Bioinformatics analysis revealed that most of the differentially expressed genes belonged to immune responses, inflammation pathways, and cell cycle control. Subsequent RT-PCR validation identified four differentially expressed genes, NEMF, ASUN, DHX29, and PTPRC, as potential biomarkers for the detection of active and latent TB infections. Receiver operating characteristic analysis showed that the expression level of PTPRC may discriminate active TB patients from healthy individuals, while ASUN could differentiate between the latent state of TB infection and healthy condidtion. In contrast, DHX29 may be used to identify latently infected individuals among active TB patients or healthy individuals. To test the concept of using these biomarkers as diagnostic support, we constructed classification models using these candidate biomarkers and found the Naïve Bayes-based model built with ASUN, DHX29, and PTPRC to yield the best performance. Conclusions Our study demonstrated that gene expression profiles in the blood can be used to identify not only active TB patients, but also to differentiate latently infected patients from their healthy counterparts. Validation of the constructed computational model in a larger sample size would confirm the reliability of the biomarkers and facilitate the development of a cost-effective and sensitive molecular diagnostic platform for TB.
   

Product Related Articles

  ✔本篇论文使用华联产品:Human OneArray  
 Bmc Cancer. DOI 10.1186/s12885-015-1671-5.
 Upregulation of MicroRNA-19b predicts good prognosis in patients with hepatocellular carcinoma presenting with vascular invasion or multifocal disease
 
 
 
  Abstract
Background After surgical resection of hepatocellular carcinoma (HCC), recurrence is common, especially in patients presenting with vascular invasion or multifocal disease after curative surgery. Consequently, we examined the expression pattern and prognostic value of miR-19b in samples from these patients. Methods We performed a miRNA microarray to detect differential expression of microRNAs (miRNAs) in 5 paired samples of HCC and non-tumoral adjacent liver tissue and a quantitative real-time polymerase chain reaction (PCR) analysis to validate the results in 81 paired samples of HCC and adjacent non-tumoral liver tissues. We examined the associations of miR-19b expression with clinicopathological parameters and survival. MiR-19b was knocked down in Hep3B and an mRNA microarray was performed to detect the affected genes. Results In both the miRNA microarray and real-time PCR, miR-19b was significantly overexpressed in the HCC tumor compared with adjacent non-tumor liver tissues (P < 0.001). The expression of miR-19b was significantly higher in patients who were disease-free 2 years after surgery (P < 0.001). High miR-19b expression levels were associated with higher α-fetoprotein levels (P = 0.017). In the log-rank test, high miR-19b was associated with better disease-free survival (median survival 37.107 vs. 11.357; P = 0.022). In Cox multivariate analysis, high miR-19b predicted better disease-free survival and overall survival (hazards ratio [HR] = 0.453, 95 % confidence interval [CI] = 0.245–0.845, P = 0.013; HR = 0.318, CI = 0.120–0.846, P = 0.022, respectively). N-myc downstream regulated 1 (NDRG1) was downregulated, while epithelial cell adhesion molecule (EPCAM), hypoxia-inducible factor 1-alpha (HIF1A), high-mobility group protein B2 (HMGB2), and mitogen activated protein kinase 14 (MAPK14) were upregulated when miR-19b was knocked down in Hep3B. Conclusions The overexpression of miR-19b was significantly correlated with better disease-free and overall survival in patients with HCC presenting with vascular invasion or multifocal disease after curative surgery. MiR-19b may influence the expression of NDRG1, EPCAM, HMGB2, HIF1A, and MAPK14.
   

  ✔本篇论文使用华联产品:Human OneArray  
 Amino Acids. doi: 10.1007/s00726-015-1956-7. Epub 2015 Mar 24..
 Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells
 
 
 
  Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4–11; also affected by Hcy-thiolactone, [−log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [−log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.