资讯中心 > 产品文献集 > Stem Cell (13)

  ✔本篇论文使用华联产品:Mouse OneArray  
 Transgenic Res. 2011, 20(5):1073-86. doi: 10.1007/s11248-010-9478-2.
 Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells 
 Weidan Peng, Yunhua Bao, Janet A. Sawicki
  Abstract
To establish a method for efficient and relatively easy isolation of a cell population containing epithelial prostate stem cells, we developed two transgenic mouse models, K5/CFP and K18/RFP. In these models, promoters of the cytokeratin 5 (Krt5) and the cytokeratin 18 (Krt18) genes regulate cyan and red fluorescent proteins (CFP and RFP), respectively. CFP and RFP reporter protein fluorescence allows for visualization of K5(+) and K18(+) epithelial cells within the cellular spatial context of the prostate gland and for their direct isolation by FACS. Using these models, it is possible to test directly the stem cell properties of prostate epithelial cell populations that are positively selected based on expression of cytoplasmic proteins, K5 and K18. After validating appropriate expression of the K5/CFP and K18/RFP transgenes in the developing and adult prostate, we demonstrate that a subset of CFP-expressing prostate cells exhibits stem cell proliferation potential and differentiation capabilities. Then, using prostate cells sorted from double transgenic mice (K5/CFP + K18/RFP), we compare RNA microarrays of sorted K5(+)K18(+) basal and K5(-)K18(+) luminal epithelial cells, and identify genes that are differentially expressed. Several genes that are over-expressed in K5(+) cells have previously been identified as potential stem cell markers. These results suggest that FACS isolation of prostate cells from these mice based on combining reporter gene fluorescence with expression of potential stem cell surface marker proteins will yield populations of cells enriched for stem cells to a degree that has not been attained by using cell surface markers alone.
   

Topic Related Articles

  ✔本篇论文使用华联产品:Human OneArray  
 Scientific Reports. 2015, 5:10106. doi: 10.1038/srep10106.
 Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands
 
 
 Lin Lu, Yan Li, Ming-juan Du, Chen Zhang, Xiang-yu Zhang, Hai-zhou Tong, Lei Liu, Ting-lu Han, Wan-di Li, Li Yan, Ning-bei Yin, Hai-dong Li, Zhen-min Zhao
  Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
   

  ✔本篇论文使用华联产品:Human OneArray  
 Northeast Bioengineering Conference (nebec). 2014 April 25-27.
 FGF2 and oxygen: Regulators of intergrin alpha-11 and extracellular matrix molecules
 
 
 Alexandra Grella, Denis Kole, Tanja Dominko
  Abstract
Recently, derivation and maintenance of pluripotent stem cells has been focused on environmental cues, with emphasis on the role of extracellular matrix (ECM) and adhesion molecules (AM). We have developed a novel approach that allows for induction of stem cell gene expression in human dermal fibroblasts (hDF) without the use of transgenes. By culturing cells in low oxygen (5% O2) with addition of exogenous FGF2 we have shown that hDF in defined culture conditions express stem cell genes and show translation and nuclear translocation of stem cell transcription factors. We have demonstrated that this shift is coupled with an FGF2-dependent down-regulation of the majority of AM and ECM targets; specifically induction of a significant down-regulation of integrin alpha 11 (Itga11) transcript and results in Itga11 loss from focal adhesions. Investigation of the mechanism by which FGF2 may be involved in regulation of Itga11 is being investigated by studying the molecular pathway downstream of FGF2 ligand that may be involved in the loss of Itga11 and associated collagen I attachment. Dissecting the molecular mechanisms involved in regulation through modulation of extracellular environment and its effect on plasticity may provide insight into the acquisition into the mechanisms involved in reprogramming of differentiated cells.
   

Product Related Articles

  ✔本篇论文使用华联产品:Mouse OneArray  
 International Journal Of Molecular Sciences. doi:10.3390/ijms17010098.
 Optimizing a Male Reproductive Aging Mouse Model by d-Galactose Injection
 
 
 
  Abstract
The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8–10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging.
   

  ✔本篇论文使用华联产品:Mouse OneArray  
 Histochemistry And Cell Biology. doi: 10.1007/s00418-015-1348-9..
 Impact of diethylhexyl phthalate on gene expression and development of mammary glands of pregnant mouse.
 
 
 
  Abstract
The widely used diethylhexyl phthalate (DEHP) is a known endocrine disruptor that causes persistent alterations in the structure and function of female reproductive system, including ovaries, uterus and oviducts. To explore the molecular mechanism of the effect of DEHP on the development of mammary glands, we investigated the cell cycle, growth, proliferation and gene expression of mammary gland cells of pregnant mice exposed to DEHP. It was demonstrated, for the first time, that the mammary gland cells of pregnant mice treated with DEHP for 0.5–3.5 days post-coitum had increased proliferation, growth rate and number of cells in the G2/S phase. The expression of cell proliferation-related genes was significantly altered after short time and low-dose DEHP treatment of mammary gland cells in vivo and in vitro. These findings showed adverse effects of DEHP on mammary gland cells in pregnant mice.