资讯中心 > 产品文献集 > Stem Cell (13)

  ✔本篇论文使用华联产品:Experimental Accessories  
 Journal Of Virology. 2012, 86(15):8041-9. doi: 10.1128/JVI.00808-12.
 Defective Antiviral Responses of Induced Pluripotent Stem Cells to Baculoviral Vector Transduction 
 Chen Gy, Hwang Sm, Su Hj, Kuo Cy, Luo Wy, Lo Kw, Huang Cc, Chen Cl, Yu Sh, Yu-chen Hu
  Abstract
Genetic engineering of induced pluripotent stem cells (iPSCs) is important for their clinical applications, and baculovirus (BV) holds promise as a gene delivery vector. To explore the feasibility of using BV for iPSCs transduction, in this study we first examined how iPSCs responded to BV. We determined that BV transduced iPSCs efficiently, without inducing appreciable negative effects on cell proliferation, apoptosis, pluripotency, and differentiation. BV transduction slightly perturbed the transcription of 12 genes involved in the Toll-like receptor (TLR) signaling pathway, but at the protein level BV elicited no well-known cytokines (e.g., interleukin-6 [IL-6], tumor necrosis factor alpha [TNF-], and beta interferon [IFN-]) except for IP-10. Molecular analyses revealed that iPSCs expressed no TLR1, -6, -8, or -9 and expressed merely low levels of TLR2, -3, and -4. In spite of evident expression of such RNA/DNA sensors as RIG-I and AIM2, iPSCs barely expressed MDA5 and DAI (DNA-dependent activator of IFN regulatory factor [IRF]). Importantly, BV transduction of iPSCs stimulated none of the aforementioned sensors or their downstream signaling mediators (IRF3 and NF-B). These data together confirmed that iPSCs responded poorly to BV due to the impaired sensing and signaling system, thereby justifying the transduction of iPSCs with the baculoviral vector.
   

Topic Related Articles

  ✔本篇论文使用华联产品:Human OneArray  
 Scientific Reports. 2015, 5:10106. doi: 10.1038/srep10106.
 Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands
 
 
 Lin Lu, Yan Li, Ming-juan Du, Chen Zhang, Xiang-yu Zhang, Hai-zhou Tong, Lei Liu, Ting-lu Han, Wan-di Li, Li Yan, Ning-bei Yin, Hai-dong Li, Zhen-min Zhao
  Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
   

  ✔本篇论文使用华联产品:Human OneArray  
 Northeast Bioengineering Conference (nebec). 2014 April 25-27.
 FGF2 and oxygen: Regulators of intergrin alpha-11 and extracellular matrix molecules
 
 
 Alexandra Grella, Denis Kole, Tanja Dominko
  Abstract
Recently, derivation and maintenance of pluripotent stem cells has been focused on environmental cues, with emphasis on the role of extracellular matrix (ECM) and adhesion molecules (AM). We have developed a novel approach that allows for induction of stem cell gene expression in human dermal fibroblasts (hDF) without the use of transgenes. By culturing cells in low oxygen (5% O2) with addition of exogenous FGF2 we have shown that hDF in defined culture conditions express stem cell genes and show translation and nuclear translocation of stem cell transcription factors. We have demonstrated that this shift is coupled with an FGF2-dependent down-regulation of the majority of AM and ECM targets; specifically induction of a significant down-regulation of integrin alpha 11 (Itga11) transcript and results in Itga11 loss from focal adhesions. Investigation of the mechanism by which FGF2 may be involved in regulation of Itga11 is being investigated by studying the molecular pathway downstream of FGF2 ligand that may be involved in the loss of Itga11 and associated collagen I attachment. Dissecting the molecular mechanisms involved in regulation through modulation of extracellular environment and its effect on plasticity may provide insight into the acquisition into the mechanisms involved in reprogramming of differentiated cells.
   

Product Related Articles

  ✔本篇论文使用华联产品:Experimental Accessories  
 Plos One. 2013; 8(6): e65489. doi: 10.1371/journal.pone.0065489.
 BAK and NOXA Are Critical Determinants of Mitochondrial Apoptosis Induced by Bortezomib in Mesothelioma
 
 
 Sara Busacca, Alex D. Chacko, Astero Klabatsa, Kenneth Arthur, Michael Sheaff,vignesh K. Gunasekharan, Julia J. Gorski, Mohamed El-tanani, V. Courtney Broaddus, Giovanni Gaudino, Dean A. Fennell
  Abstract
Based on promising preclinical efficacy associated with the 20S proteasome inhibitor bortezomib in malignant pleural mesothelioma (MPM), two phase II clinical trials have been initiated (EORTC 08052 and ICORG 05–10). However, the potential mechanisms underlying resistance to this targeted drug in MPM are still unknown. Functional genetic analyses were conducted to determine the key mitochondrial apoptotic regulators required for bortezomib sensitivity and to establish how their dysregulation may confer resistance. The multidomain proapoptotic protein BAK, but not its orthologue BAX, was found to be essential for bortezomib-induced apoptosis in MPM cell lines. Immunohistochemistry was performed on tissues from the ICORG-05 phase II trial and a TMA of archived mesotheliomas. Loss of BAK was found in 39% of specimens and loss of both BAX/BAK in 37% of samples. However, MPM tissues from patients who failed to respond to bortezomib and MPM cell lines selected for resistance to bortezomib conserved BAK expression. In contrast, c-Myc dependent transactivation of NOXA was abrogated in the resistant cell lines. In summary, the block of mitochondrial apoptosis is a limiting factor for achieving efficacy of bortezomib in MPM, and the observed loss of BAK expression or NOXA transactivation may be relevant mechanisms of resistance in the clinic.
   

  ✔本篇论文使用华联产品:Experimental Accessories  
 Plos One. 2012, 7(8):e43304. doi: 10.1371/journal.pone.0043304.
 Luteolin Induces microRNA-132 Expression and Modulates Neurite Outgrowth in PC12 Cells
 
 
 Lian-fang Lin, Szu-ping Chiu, Ming-jiuan Wu, Pei-yi Chen, Jui-hung Yen
  Abstract
Luteolin, a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR- 132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.